AUGMENTATION QUOTIENTS OF INTEGRAL GROUP RINGS

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quotients of Representation Rings

We give a proof using so-called fusion rings and q-deformations of Brauer algebras that the representation ring of an orthogonal or symplectic group can be obtained as a quotient of a ring Gr(O(∞)). This is obtained here as a limiting case for analogous quotient maps for fusion categories, with the level going to ∞. This in turn allows a detailed description of the quotient map in terms of a re...

متن کامل

Class Groups of Integral Group Rings(x)

Let A be an Ä-order in a semisimple finite dimensional /(-algebra, where K is an algebraic number field, and R is the ring of algebraic integers of K. Denote by C(A) the reduced class group of the category of locally free left A-lattices. Choose A= ZC, the integral group ring of a finite group G, and let A be a maximal Z-order in QG containing A. There is an epimorphism C(A)-C(A'), given by JIÍ...

متن کامل

Commutative group rings with von Neumann regular total rings of quotients

Article history: Received 12 May 2011 Available online xxxx Communicated by Luchezar L. Avramov In memory of Miki Neumann

متن کامل

Central Units of Integral Group Rings of Nilpotent Groups

In this paper a finite set of generators is given for a subgroup of finite index in the group of central units of the integral group ring of a finitely generated nilpotent group. In this paper we construct explicitly a finite set of generators for a subgroup of finite index in the centre Z(U(ZG)) of the unit group U(ZG) of the integral group ring ZG of a finitely generated nilpotent group G. Ri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the Korean Mathematical Society

سال: 2008

ISSN: 1015-8634

DOI: 10.4134/bkms.2008.45.1.101